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Abstract--The paper considers a problem in which a steady-state sonic wave is propagated in the longi- 
tudinal direction in a fluid enclosed between two horizontal parallel plates which are kept at different 
temperatures;. The distance between the plates is much smaller than the sound wavelength. Rayleigh's 
vortical acou~stic streaming that appears in the region between the plates as a result of the sound wave leads 
to forced heat convection. The effect of that forced convection on heat transferred between the plates is 
analyzed theoretically. An acoustic Peclet number, which represents the interaction between heat con- 
duction and #orced convection is introduced, and asymptotic relations expressing the mean Nusselt number 
in terms of this dimensionless group are derived. The results obtained demonstrate that acoustic streaming 

results in a marked enhancement of heat transfer between the plates. 

INTRODUCTION 

The study of acoustic streaming was started with the 
work of Lord Rayleigh [1], who considered the vortex 
flow which occurs in a long pipe as a result of the 
presence of a longitudinal standing wave. This work 
was continued by Westervelt [2], Nyborg [3] and 
Schlichting [4]. Lighthill [5] has emphasized the fun- 
damental  role of dissipation of the acoustic energy in 
the evolution of the gradients in the momentum flux, 
which bring about  lhe secondary streaming. Stuart [6] 
has introduced the streaming Reynolds number,  Rs, 
based on the characteristic velocity of the secondary 
flow. In contrast to the previous investigations which 
considered Rs << 1, he studied the cases where Rs >> 1. 

The heat transfer process in the pulsating pipe flow 
was examined by Romie [7]. Rott  [8] has investigated 
the acoustic oscillations in an infinite fluid region near 
a flat plate. The effect of mean temperature variation 
along the direction of oscillations is included. Wang 
and Kassoy [9] have studied the thermoacoustic pro- 
cess in a shear flow contained between two rigid par- 
allel plates. The results describe the general transient 
evolution of acoustic waves driven by a plane source 
located at a given duct cross-section. 

The effect of sound waves on both natural  and 
forced convection from a cylinder has been studied 
extensively. References [10-13] provide an overview 
of the works done in this field. The works of Parker 
and Welsh [14] and Cooper et al. [15] deal with exper- 
iments that consider the influence of sound waves 
on forced convection from horizontal flat plates. The 
effect of  sound on natural  convection for a vertical 
flat plate has been studied by Engelbrecht and Pre- 
torius [16]. 

The effect of  an oscillating flow field on heat and 
mass transfer from single spherical particles and drop- 
lets has also been investigated. Some examples of these 
theoretical studies can be found in refs. [17-22]. These 
publications report increases, decreases or unnotice- 
able changes in heat and mass transfer, depending 
on the frequency and magnitude of the steady and 
oscillating flow. 

The present study considers the effect of Rayleigh's 
vortical acoustic streaming on heat transfer between 
two horizontal parallel plates which are kept at differ- 
ent constant  temperatures. The condition Rs << 1 for 
the streaming Reynolds number  is assumed to be sat- 
isfied throughout the domain. 

FORMULATION OF THE PROBLEM 

One of the most interesting ways in which sound 
waves are affected by viscosity is in the formation 
of steady vortex flow around solid obstacles or near 
boundaries. This acoustic streaming occurs in the 
second approximation with respect to the wave ampli- 
tude ; its characteristic feature is that the velocity in it, 
namely, in the region outside a thin periodic boundary  
layer is independent of the viscosity, even though it 
originates from that viscosity [1]. 

The properties of acoustic streaming are most typi- 
cally seen when the characteristic length in the prob- 
lem (in the present case the distance between the par- 
allel plates) is much smaller than the sound 
wavelength 2, but  much larger than the thickness of 
the periodic boundary layer (the penetration depth), 
1 = x/2x/2x/2x/2x/2x/2x~ for viscous waves : 

2 >> h >>/. 

t Author to whom correspondence should be addressed. In view of the latter condition, we can distinguish 
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NOMENCLATURE 

a thermal diffusivity 
co speed of sound in a fluid 
F~, F2 the integrals defined in equations (28) 

and (32) 
h distance between the plates 
k thermal conductivity 
l thickness of periodic boundary layer 
N u  mean Nusselt number 
n wave number 
p pressure 
P e  = t j t c  acoustic Peclet number 
q heat flux 
Rs streaming Reynolds number 
T temperature 
T~, T2 the temperatures of the plates 
t time 
ta characteristic time connected to 

thermal diffusivity 
t~ characteristic time connected to forced 

convection 

U velocity outside periodic boundary 
layer 

vc = h/tc characteristic velocity of forced 
convection 

vx, vy velocity components 
v(~ j), v~ ) successive approximations of the 

velocity 
v0 amplitude of sonic wave. 

Greek symbols 
6 characteristic dimension of the 

temperature change region 
0 (°), 0 (°, 0 t:~ successive approximations of 

the temperature 
2 wavelength 
v dynamic viscosity 

stream function 
co frequency. 

Superscript 
' dimensional variable. 

y' 

h/: 

T ' = T  2 / 

( 

L ) ~ \ h ( l ~ l & ~ ) \  

0 
i ~ ¢  i , ,  

T ' = T  1 

Fig. 1. Rayleigh's acoustic streaming between two horizontal plates. 

x I 

in the flow region a narrow acoustic boundary layer 
in which the velocity decreases from its value in the 
sound wave to zero at the solid surface. Since the 
velocity in this layer, as in the sound wave itself, is 
much less than that of sound, and the characteristic 
dimension I is much less than 2, the flow there may be 
regarded as incompressible. 

We now consider the problem of acoustic streaming 
between the horizontal walls, y '  = 0 and y '  = h (Fig. 
1) which are kept at different constant temperatures, 
T1 and T2, 7"2 > T~. The present analysis assumes that 
the effects of natural convection are negligible. 

Let us consider the acoustic boundary layer at the 

x ' - z '  plane on one of the solid walls, assuming two- 
dimensional flow in the x ' - y "  plane (Schlichting [4]) : 

Ov~ ~v~ Ov~ ~2v~ , ~U' ~U' 
~?+V;Ux,+V;Ty,-Voy,~= u T~, +T?-. (1) 

In the present case the flow velocity U ' ( x ' ,  t') outside 
the boundary layer is given by 

U" = Vo COSnX" coscot '  = Vo c o s n x '  r e e  -i~°'' (2) 

where n = co~co, which corresponds to a plane station- 
ary sound wave with frequency co. Equation (1) can 
be solved by successive approximations with respect 
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to the small parameter v0, i.e. the amplitude of the 
velocity fluctuations in the sound wave. 

The first approximation G (') satisfies the linear 
differential equation 

c~vlm c~:"v2 l~ 
-- v - = -- icovo COS nx' e-i~oc. (3) 

Ot Oy 2 

The calculations performed by Schlichting [4] yield 

Vx °) = re[v0 c o s n x ' e - i ~ ' " ( 1 - e - ~ Y ' ) ] .  (4) 

The second approximation is obtained as 

~VX(2) ~2V'~(2) U' OUt '(1) OIQ~¢(1) - -  •;,(1) OV;(I) 
0 - ~ -  - -  V OY 2 == ~ - X  - -  Vx OX 8y " 

(5) 

The right-hand side of equation (5) contains terms 
with frequencies co + co = 2co and co-co = 0. The lat- 
ter give rise to time-independent terms, which are the 
ones representing 'Lhe steady flow in question ; we con- 
sider only this part of the velocity. Thus there is a 
steady-state component in the solution which does not 
vanish at large disl:ances from the wall, i.e. outside the 
acoustic boundary layer. Its magnitude is 

3v02 . 
V;(OO) = 8C0 sin znx' .  (6) 

One can see that outside the boundary layer there 
is, in the second approximation with respect to v0, a 
steady flow, the velocity of which is independent of 
the viscosity. The velocity at the edge of the boundary 
layer, as given by equation (6) serves as a boundary 
condition for determining the main acoustic flow. In 
the case of a small streaming Reynolds number, Rs, 
introduced by Stuart [6], in which the velocity is the 
steady state velocity of the secondary flow, as given in 
equation (6), the acoustic streaming can be described 
by the Navier-Stokes equations over the whole region 
considered, 0 < y ' <  h. Since the velocity of the 
required steady flow is much lower than that of sound, 
the flow may be regarded as incompressible. More- 
over, since v0 is assumed infinitesimal in the sound 
wave, the quadratic terms in the equation of motion 
may be neglected. Hence, the Navier-Stokes equa- 
tions, rewritten in terms of the stream function, are 
reduced to (Landau and Lifshits [23]) 

A2O'=: O ~ S + ~ ; 2 ]  @ =0" (7) 

Because of the condition h << 2, the derivatives with 
respect to y'  are much larger than those with respect 
to x'. Neglecting ~Lhe latter, and using the boundary 
conditions of equation (6) at y' = 0, y'  = h, and the 
obvious symmetry of the problem about the plane 
y" = h/2 one obtains the solution [1] 

v" = 3v~ sin 2nx' [ 3 ( y ' - h / 2 )  2] 
16Co 1 (h/2) 2 J 

8c0 y' - (8) (h/Z) 2 [" 

Rayleigh's acoustic streaming described by these 
expressions consists of two series of vortices located 
symmetrically about the median plane y'  = h/2 and 
periodic in the x-direction, with a period 2/2 as shown 
in Fig. 1. The direction of the flow inside the vortices 
is indicated in the figure by arrows. The x-component 
of the velocity, V'x, changes sign at a distance 
h(1 - l/x/3)/2 from the wall. 

The energy equation with the relevant boundary 
conditions that describes the heat transfer in the 
region considered is 

, c~T' aT'  632T 
G ~x,  +v;. fffTy, = a@,:  

T ' = T ~  @ y ' = 0  T ' = T 2  @ y ' = h  

OT' 2 
0x' 0 @ x ' = 0  x' 2 (9) 

where v', v;. are given by equation (8). 
The boundary conditions at x' = 0, x' = 2/2 imply 

that there is no external temperature gradient in the 
x-direction. One should bear in mind that we are 
dealing with time-averaged heat process since the vel- 
ocity determining the convection is of the mean sec- 
ondary flow. 

ASYMPTOTIC TREATMENT AND RESULTS 

We now define the various times connected with the 
process at hand 

8c 2 h 2 
to = ta = - -  (10) 

3v0Zco 4a 

where tc is the characteristic time of the forced con- 
vection process and ta the characteristic time of ther- 
mal diffusivity. Let the following dimensionless group 
be introduced : 

t~ 3v2h2co 
Pe = -- = (11) 

tc 32ac~ 

This is essentially an acoustic Peclet number. When 
Pe << 1, i.e. the characteristic time of the convective 
process is relatively large, the influence of the acoustic 
streaming upon heat transfer is very small. On the 
other hand, when Pe >> 1, the effect of the forced 
convection is dominant. 

We now reformulate the problem in terms of the 
following dimensionless variables 

2y' T ' - -  TI 
x = 2 n x ' ,  y = ~ - - 1 ,  O - T 2 _ T  ~ . (12) 

Equation (9) combined with equation (8) and together 
with the corresponding boundary conditions is re- 
written as follows : 
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2 00 3 00 020 
- ( 1 - 3 y  ) s inX~x+(y -y  )coSX~yy = Pe - 1 -  Oy 2 

(13) 

0 = 0  @ y = - i  

0 = 1  @ y = l  

00 
0 ~ = 0  @ x = O  x=2rc .  (14) 

The acoustic streaming in terms of the dimen- 
sionless variables together with the boundary con- 
ditions of the thermal problem are shown in Fig. 2. 
Two different limiting cases for Pe values will be con- 
sidered. 

Case of Pe << 1 
Let us first consider the case when the influence of 

forced convection is very small, i.e. when Pe << 1. In 
this case the solution of equation (13) can be built by 
the method of the successive approximations. We seek 
the solution in the form 

0 = 0 (°) +PeO (') +pe20 (2) +... (15) 

Substitution of the expansions of equation (15) into 
equation (13) yields the zeroth approximation 

0 (°) = ½(y+ 1). (16) 

This solution describes the temperature distribution in 
the region without any influence of forced convection. 
For the first approximation equation (13) yields 

020(o 
=½COSX(y--y3);O0)---O @ y = + l .  0y2 

The solution of equation (17) is 

( 6  7y) 0 ~') = ~ c o s x  20 ~ " 

For  the second approximation equations (13) and (14) 
yield 

020(2) = ¼ (1 -- cos 2x) (1 -- 3y 2) 
@2 20 

+'4(l+c°s2x)(y-y3)(22 Y4 70) 

0 (2)=0 @ y =  ___1. (19) 

One notes that the right-hand side of equation (19) 
contains terms that do not depend on x. The latter 
give rise to x-independent terms in the solution, which 
are the ones representing a wall heat flux which is 
averaged with respect to x ; we consider only this part 
of the solution. Omitting simple intermediate cal- 
culations we obtain for the mean temperature gradient 
at the wall 

(O0)=½(l+O.O07Pe2)~yy @ y = + l _  (20) 

and the mean Nusselt number 

Nu = 1 +0.007Pe2, Pe << 1. (21) 

As seen from equation (21) the effect of acoustically 
enhanced heat convection for this case is rather small. 
Moreover, the result obtained has only theoretical 
significance, since, when Pe << 1 the effect of natural 
convection, neglected in the present analysis, may be 
important in the presence of gravity. 

Case of Pe >> 1 
Let us now consider the more interesting case, when 

(17) the effect of the acoustic field is very large, i.e. when 
Pe >> 1. In this case, the coefficient of the highest order 
derivative in equation (13) is very small: therefore, 
heat conduction manifests itself only in the narrow 

(18) regions in which both components of the velocity 

1/~/'3 

-11 

i 
w /  n / 2  

=1 

I 

3 ~ 2  

t" 
A 

x 

0 = 0  

Fig. 2. Acoustic streaming between the plates in the dimensional variables. The small discs represent the 
areas of heat conduction effect. 
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vanish. These regions are noted in Fig. 2 by small 
black disks. It is clear a priori, that the contribution 
to the mean heat flow at the walls is due to heat 
conduction only in the vicinity of the points (0, - 1), 
(0, + 1), 0z, - 1), 0z, 1), (2n, - 1) and (2n, 1). As the 
problem is periodic with a period of 2n, the con- 
tributions at x = 2n are identical to those at x = 0. 

First of all we estimate the distance over which the 
temperature near the walls changes noticeably. For  
large Pe, the distance 6' is small compared with the 
distance between the plates, h. The order of magnitude 
of 6' may be obtained from an estimate of the terms 
in equation (9). Over the distance from y ' =  0 (or 
y ' = h )  to y ' ~ 6 '  (or y ' ~ h - 6 ' )  at x ' = 0  (or 
x ' =  2/4), the temperature varies by an amount  of 
the order of the total temperature difference T2 -T1  
between the walls, while the velocity Vy varies over the 
distance by an amount  of the order of 

6' 6' h 
v ~ - ~ ~ ,  v~=-t¢ (22) 

where v~ is the characteristic value of convective 
velocity, Vy, since the total change of the order of vo 
occurs over the distance h. Hence, for y '  ~ 6' and 
x'  = 0, the terms in equation (9) are, in order of mag- 
nitude, 

2 T '  T 2 - -  T 1 0 T'  T2 -- T I 
a Oy,~ ~ a ~ 2 - -  and v~ ~y, ~ to (23) 

If the two expressions are comparable, we have 

6" ~ x / ~  ~ x /~aPe- '  ~ hPe -1/z. (24) 

Thus, for large Pe, the thickness of the temperature 
boundary  region decreases inversely as the square root 
of Pe. The heat flux is given by 

k OT" T2-- T, k ( T 2 -  T') pel/2 (25) 
~ y , ~ k  6 - -  h 

q = -  

and the required limiting law of heat transfer is found 
to be 

Nu = const Pe 1/2. (26) 

In order to determine the value of the constant  in 
equation (26), let us treat equations (13) and (14) in 
the vicinity of the lines x = 0 and x = n. 

At x = 0 equations (13) and (14) yield 

020 O0 
ay 2 -- Pe(y-Y3)  ay 

0 = 0  @ y = - - I  0 = 1  @ y =  1. (27) 

The solution of  the problem is given by 

1 y Pe(y2[2_y4/4) 0 : = - - I  e dy F~ J~ 

F 1 := I I e ee(y2/2-y'i/4) dy. (28) 
1 

The integral F1 at Pe >> 1 may be estimated by the 
Laplace method [24] : 

Fl = exp , Pe ~ oe. (29) 

In accordance with equations (28) and (29), the tem- 
perature gradient near the walls y = +_ 1 is given by 

O0 1 
~yy y=+,  x/~Pe'/2. (30) 

At  x = n equat ions  (13) and (14) yield 

820 3 80 
@ 2 -  Pe(y--y )~y 

0 = 0  @ y = - I  0 = 1  @ y = l .  (31) 

The solution of the problem is given by 

0 = e -Pe(y2/2-y4/4) dy 
I 

F2 = f~l e-ee(Y2/2-Y'/4) dy. (32) 

The integral F2 at Pe >> 1 may also be estimated by 
the Laplace method : 

F2 = .~ Pe Pe ~ oo. (33) 

The temperature gradient near the walls y = _+ 1 is 
given by 

~yy=+, = ~ P e l / 2 e x p ( - - ? ) .  (34) 

One could see that this term vanishes as Pe tends to 
infinity. Hence, at large Peclet numbers the mean heat 
flux is determined by heat transfer in the vicinity of 
the line x = 0, where the forced convective motion 
caused by the acoustic field is directed to the walls. 
From equation (30) it follows that the expression for 
mean Nusselt number  has the form 

2 
Nuu = - - P e  I/2 = 1.13Pe ~/2, Pe >> 1. (35) 

Thus, for large Peclet numbers the mean Nusselt num- 
ber is proportional to the square root of Pe and the 
coefficient ofpropor t ional i ty  is equal to 2/,,/~. This 
means that Nu is proportional to the amplitude and 
to the square root of the frequency of acoustic oscil- 
lations. 

Let us consider, for example, heat transfer in air, 
a = 0.2 x 10 .4 m 2 s -~, Co = 330 m s - t  between two 
parallel plates with h = 0.1 m, which is affected by 
stationary sound waves of various intensities and fre- 
quencies. The results are presented in Fig. 3. The con- 
sidered intensities are of 140 dB and 145 dB. This 
example demonstrates the significant acoustic 
enhancement of heat transfer in a certain range of 
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Nu 

10 
145dB 140dB 

h = O . l m  

I I . . _  

10 3 10 4 10 5 
(0 

Fig. 3. Average Nusselt number as a function of frequency for two different sound wave intensities in air. 

m 

Nu 

6 

5 

4 

3 

2 

1 ~ " " 
Without sound wave 

10 20 

Fig. 4. Average Nusselt number as a function of Pe. 

Pe 

sound wave frequencies, especially in the ultrasonic 
range. 

SUMMARY 

A sonic wave which propagates longitudinally in a 
fluid between two parallel horizontal plates has been 
shown to enhance the heat transfer from the plates to 
the fluid. This heat transfer is a result of Rayleigh's 
vortical acoustic streaming. The steady state two- 
dimensional energy equation describing that forced 
convection is solved by the method of asymptotic 

expansions. The solution shows the effect of acoustic 
streaming on the heat transfer between the plates. 

The problem of heat transfer in the presence of a 
sonic field is formulated in terms of the acoustic Pe 
number, which represents the interaction between 
heat conduction and forced convection. Asymptotic 
relations for Pe << 1 and Pe >> 1 expressing the time 
and longitudinal direction averaged Nusselt number, 
Nu, are derived. The qualitative dependence o f  Nu(Pe) 
is reproduced in Fig. 4. The present analysis applies 
only to small and large values of Pe. The solution for 
intermediate Pe values is shown by a dashed line. The 
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analysis of  forced heat  convect ion  in this region can  
be carr ied out  by :;ome numerical  method,  and  it is 
the subject of  a fu tare  investigation.  

The most  interest ing case of  the present  analysis is 
tha t  of  Pc >> 1, namely,  when  the effect of  the acoustic 
field is very large. In this case heat  conduc t ion  is lim- 
ited to the na r row regions of  thickness 6', which are 
very small, as compared  with the distance between 
the plates, h (see Fig. 2). This thickness is inversely 
p ropor t iona l  to the square root  of  Pe. As a result, the 
enhancemen t  of  heat  t ransfer  for large Pe is pro- 
por t iona l  to the square  root  of  Pe, i.e. the average 
Nussel t  n u m b e r  is p ropor t iona l  to the ampl i tude  and  
the square root  of  1:he frequency of  the acoustic wave. 
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